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Abstract. Shadow detection is a fundamental challenge in the field of computer vision. It requires the 

network to understand the global semantics and local details of the image. All existing methods depend 

on the aggregation of the features of a multi-stage pre-trained convolution neural network, but in 

comparison to high-level capabilities, low-level capabilities provide less detection performance. Using 

low-level features not only increases the complexity of the network but also reduces its time efficiency. 

In this article, we propose a new shadow detector that only uses high-level features and explores the 

complementary information between adjacent feature layers. Experiments show that the technique in 

this paper can accurately detect shadows and perform well compared with the most advanced methods. 

The detailed experiments performed on three public shadow detection datasets, SUB, UCF, and ISTD, 

we demonstrate that the suggested method is efficient for detecting any sort of shadow image, which 

provides the maximum percentage of accuracy and stability. 
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INTRODUCTION 

A shadow is an unseen entity that blocks light from a point of light. Behind a light 

source, it fills the entire 3-dimensional space. Hand-crafted and deep convolution neural 
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networks (CNNs) have recently been used to achieve considerably better results than the prior 

state-of-the-art for additional durable characteristics than shadow detection [1]. The image with 

prior and crafted features does not make high-level semanticity successful. Initial shadow 

detection approaches are mainly models focused predominantly on invariant hypotheses 

regarding color chromatics or illumination and use artisanship features such as illumination 

points [2] and others. The assumption model only works well with high-quality as well as well-

restrained images. For that reason, shadow regions are identified in consumer photos when 

consumer photos perform so poorly on complex photos, for that reason, shadow regions are 

identified in consumer photos. Later, data-driven strategies design certain manual features on 

annotated data and transmit them into various classifications [3]. Although these strategies 

achieve improvements in accuracy, they are usually degraded in complex cases in which 

handcrafted features do not discriminate sufficiently for shadow regions to be found. Various 

hand-crafted features were used to generate user image suggestions. The initial reviews focused 

on edge and pixel specifics. For example, Guo et al. [4] measured illuminating features for 

segmented areas and then assembled a graphic classifier using details from each area and 

relationships in pairs. And classify them based on indications of texture, gradient, and intensity. 

Instead of looking at individual pixel-level signals, the researchers looked at region-level 

signals. Vicente et al. [5] Highly qualified shadow and shadow field classificatory and Markov 

Random Field (MRF) were used to improve. performance in a parallel context. Many of the 

methods mentioned above are hand-crafted, making them ineffective in complex scenes. 

However, picture priors and hand-built features for the removal of high-level semantics are not 

successful. 

More recently, approaches based on deep convolutional neural networks have shown 

promising results in a variety of visual regions, yielding an accurate map with a high 

computational cost. For shadow images, CNN can pick up on global spatial settings [6]. Learn 

more about spatial context and how to increase the efficiency of shadow detection, the analysis 

and integration of different contexts on multiple scales into the global context on objects and 

conditions of illumination in the image, and local contexts on data in the shadow type. This 

leads us to explore shadowy contexts across multiple layers of CNNs, which require shallow 

sections to reveal local contexts and deep layers. Due to the clear potential for the generalization 

of deep CNN models, not only image-level grading tasks, but pixel-level grading tasks have 
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been developed and used [7]. In terms of function, the encoder-decoder models are based on 

fully convolution networks (FCNs) like semantic images, and edge detection SOD (Salient 

Object Detection) have greatly improved their performance on pixels [8]. The trend towards 

mainstream SOD methods, particularly in the past few years, indicates that most work is done 

inside the decoder scheme. The encoder is a multilevel, deeply-trained image classification 

model (i.e., ResNeXt-101) [9] Semantic information is used in low-resolution high-level 

characteristics, while low-level encoding represents spatial precise awareness. Using the 

combined detection of shadows, we evaluated shadow edge data and built a multi-task CNN 

for shadow detection, shadow edges of a single image, and other unlabeled datasets. These 

functions are built into the decoder to create an accurate performance chart. Various decoders 

[10] have been developed by researchers to combine low and high-level characteristics. 

In a deep aggregation approach connected with high-level functioning, low-level 

attributes play a lesser role in success. When aggregating characteristics from high to low levels, 

performance appears to be readily saturated. Low-level resolution features that integrate these 

features with high-level device output improvements. When CNN becomes deep, the 

functionalities turn from low to high-level. Deep mapping models can only recover details on 

the spatial map by combining the deeper layer's features [11]. The effect of this mechanism, 

however, is dependent on map accuracy. Because deeper layer fusion characteristics create a 

fairly right shadow chart, this map may be used for the direct refinement of characteristics. 

The methods above all rely on integrating multi-scale pre-trained neural network 

functionality, although we find that the advanced characteristics are more important for the 

effectiveness of shadow detection. To improve the performance and efficiency of shadow 

identification, we propose a modern, lightweight end-to-end network for shadows that only 

leverages profound and specialized features. Then, additional information is collected from 

adjacent layer functions to enhance the efficiency of shadow detection. More specifically, the 

following are the primary contributions to this paper: 

• First, a new, lightweight end-to-end network for shadow detection has been developed, 

which accepts shadow RGB images as input and produces shadow RGB images as 

output. maps that detect shadows. It includes a cascaded partial decoder that only uses 

deep advanced features to enhance time efficiency. It obtains complementary 

information from adjacent layer features to boost shadow detection performance. 
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• The results of the experiments on three public data sets suggest that the technique used 

in this paper is more reliable and efficient. 

RELATED WORK 

Researchers have developed comprehensive shadow detection algorithms over the last 

two decades. Early studies investigated a physical model using the variant of illumination as 

well as invariant assumptions, texture, and strange derivative characteristics to differentiate 

shadows from a single monochromatic image. For more specific shadow measurements in 

monochromatic photos by using shadow variance and invariant indicators in a learning-based 

way that is data-driven [12]. Other models of color information assumptions will only operate 

well on high quality and accuracy when performing poorly on complex user images. In this 

case, to meet the demands of multitask learning, we will create a new large-scale dataset that 

includes picture shadow triplets such as shadow, shadow mask, and shadow-free images. ST-

CGAN outperforms various state-of-the-art techniques in terms of both detection and 

extraction. The scGAN [6] generator must be trained to incorporate the shadow mask into the 

input scene image to generate an output image that is conditioned on an input image. For global 

structure and context, the generator of scGAN features a full view of the whole image and 

doesn't line an area region classifier. To learn more about the spatial environment and to 

increase the efficiency of shadow detection [13]. Guo et al. measured illuminating features for 

segmented sections, then build a graphic classifier using data from each region and relationships 

between pairs of regions that are likely to be made of the same material, and decide whether or 

not they have identical lighting circumstances. The existence of an encoding area and the 

limited range of edge capabilities indicates whether the same or different luminescence in the 

two regions Vicente et al. [14] region categorizer will be identical to each region's shadow 

probability, which is supported by contextual indications between the neighboring regions. 

The relational indications are inserted into the context as feature classifications of the 

shadow and shadow region using the MRF model to improve performance by using the parallel 

meaning of the region. Here we speak mostly about deep learning frameworks for detecting 

shadows: Inspirational CNN approaches were created for shadow detection to obtain deep 

shadow inference functions from tagged information sets, and they were motivated by the 

remarkable development of deep learning in many computer vision problems. Deep learning's 
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effectiveness in computer vision problems has recently increased the popularity of shadow 

detection approaches [1]. Researchers first considered CNN's mainly as a strong feature 

extractor and drastically improved its performance with strong, deep characteristics. Khan et 

al. [15] developed a method to classify picture pixels as shadows or non-shadows through the 

creation of a 7-layer CNN that extracts deep features from pixels in the image and feeds them 

into the conditional random field (CRF) model to smooth shadow detection effects. Authors in 

[16] Shen et al. Shadow edges were retrieved using structured CNNs, and so shadow restoration 

was handled as an optimization debate. The occurrence of complete convolution networks 

(FCN) later proposed end-to-end CNN models [17]. As an example, Vicente et al. [18] had 

previously studied a shadow-level image and used a shadow mask-based patch to coach CNNs. 

Then, using a conditional generator for the input picture, a shadow detector called scGAN 

forecasts a shadow mapping. A quick, deep shadow detection grid uses the preceding map's 

shadows to anticipate the shadow patch masks, then includes the results of non-linear and non-

patched dispatches for the overall shadow map prediction. Nowadays, researchers have shown 

that combining multi-level features increases performance on dense time series forecasting 

[19]. High-level aspects of CNN include contextual and low-level knowledge. Spatial 

information is useful in improving object boundaries. This method is used in the course of 

several works, specifically fragments of the relevant subjects. Integrate multi-level function 

maps in numerous resolutions at identical times with semantic information and spatial data [20]. 

Then predict and fuse the shadow map at every resolution to make the ultimate shadow map. 

[21] retrieves multi-level context-aware features and uses a two-fold gated framework to 

transport messages between them. 

Introduced their shadow-aware distraction module (DS) in each shadow sheet and fuse 

distraction functions. As the shadow bar grows, the creation of their detection networks requires 

a tremendous amount of information, and annotations at the pixel level almost have a downside 

to existing methodologies. Deep models of state-of-the-art shadow detection have primarily 

emphasized the degree to which global contexts are extracted. But here we introduce the utility 

of shadow detection’s deeply advanced functionality. We propose a replacement, lightweight, 

end-to-end shade network that uses only proven and advanced functionality to boost shadow 

detection performance and effectiveness. Then additional information will come from the 

adjacent functions for shadow detection. 
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PROPOSED METHOD 

We suggest in this paper, an additional exploration of deep aggregation for a unique 

partial decoder framework. 

Overview of the proposed framework’s architecture 

Our proposed method consists of two parts: the Adjacent Layers Shadow Feature 

Extraction Module (ALSFEM) and the Shadow Feature Redress Module (SFRM). Figure 1(a) 

shows the overall architecture: The feature extraction model discards the first three low-level 

features and then divides them into the attention branch and detection branch, which contain 

the fourth and fifth layers with the same structure, and are connected to the partial decoder 

module at the end. Figure 1(b) The current process of the shadow detection system leverages 

adjacent layer shadow characteristics to fully utilize both the two levels of the global and local 

contexts. Our network accepts one picture as an input and produces shadow detection as an 

output. First, it employs CNN to extract features of varying resolutions. The input picture is 

supplied into the backhaul at various sizes to encourage backbone capabilities. The layer of 

final convolution of output for each field is used for backbone features in the network. Each 

field takes an image, which is then passed to the E3, E4, and E5 features by the Partial Decoder 

Module (PDM) [16], which only integrates features from a deeper layer. After initializing the 

shadow map, we'll go through the proposed holistic attention map(HAM) and then an improved 

HAM to refine the feature E3. The attention map efficiently eliminates the distractor in the 

feature and multiplies each feature to come up with an attention map. The shallow layer feature 

module identifies the deep aggregation layer feature module and accumulates shadow 

contextual information for the entire image, rather than just one shadow-specific detail inside 

the local area. Then, utilizing two neighboring feature modules as input for a concentrating 

module and an SFEM for context feature modification, we construct SFEM to gradually 

improve the features of each CNN layer. We incorporate SFEM with SFRM, which is then up-

sampled using bilinear interpolation, thick relations with dense connectivity were concatenated 

from top to bottom and routed to a convolutional 1× 1 layer to fusion. Finally, we forecast the 

scoring module based on the features and combine those two scores in a sustained attention 

layer as well as a sigmoid activation function to obtain the final shadow detection result using 

the soft binary shadow map.  
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a)  b) 

Figure 1. (a) Illustrates the network model architecture proposed in this paper, RGB 

image as the new input, and output shadow detection results. (b) is the structure of the PDM 

module, which aggregates deep features. 

Partial Decoder Module (PDM) 

Figure 1(b) shows that the Partial decoder module uses an improved Receptive Field 

Block (RFB) module, adds a branch to extend the receptive field, and uses 1×1 convolution to 

cut back on the quantity of calculation. Create an efficient context unit motivated by RFB. We 

have added three expanded receptive fields to the first RFB, and our context module has three 

branches {𝑏𝑚, 𝑚 = 1,2,3}. For acceleration, we utilize a 1×1 convolutional layer to reduce the 

channel number to 32 in each branch. For {𝑏𝑚, 𝑚 > 1} we add two layers: (2𝑚 − 1) × (2𝑚 −

1) Convolutional layer (2m - 1) and 3×3 layers of conversion (2m-1) dilation. We configure 

the outcomes of such divisions and use an extra 1×1 fully connected layer to minimize the 

channel to 32. The original RFB was then given a brief connection. In fact, given the split 

backbone network characteristics {𝑓𝑖
𝑐, 𝑖 ∈ [1, … , 𝐿], 𝑐 ∈ [𝑎, 𝑑]} we derive discriminatory 

features from the context module. Then, to close the gap between multi-level features, employ 

multiplication operations.  
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a)  b) 

Figure 2. The structure diagram of ALSFEM and SFRM. 

We specifically set (𝑓𝐿
𝑐2 = 𝑓𝐿

𝑐1) for the best feature (i = L). For features {𝑓𝑖
𝑐1, 𝑖 < 𝐿} 

with all deeper layer characteristics {𝑓𝑖
𝑐2}: 

 𝑠𝑓𝑖
𝑐2 = 𝑓𝑖

𝑐1 ⊙∏𝑘=𝑖+1
𝐿  Conv⁡(𝑈𝑝(𝑓𝑘

𝑐1)), 𝑖 ∈ [𝑙, … , 𝐿1]                                                  (1) 

where Up (·) is a factor 2𝑘−𝑗 upsampling feature while Conv can be a 3×3 convolutional layer. 

Finally, we use an up-sampling approach for integrating multi-level functions. We built 

a provisional converter and used the convolutional layer 3×3 due to the optimized layer (l=3, 

L=5) to get a feature map of [
𝐻

3
,
𝑊

3
] size and 64 channels. Get the extracted feature map and 

scale it to [H, W] using 3×3 layers and 1×1 classification algorithms. In addition, when the 

aggregation of those works are want to integrate the functions of every branch the proposed 

framework may want to improve the prevailing deep aggregation model. Whether or not the 

mathematical formulation of the core network is increased and a decoder is introduced, the 

computational complexity of the backbone network is still greatly decreased due to the 

discarding of low-level operations inside the decoder. Furthermore, the proposed framework's 

cascading optimization technique enhances performance, and studies demonstrate that these 

two branches outperform the original model. 
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Adjacent layer shadow feature extraction module 

First, we will explain how the ALSFEM works in the following parts. Figure 2(a) 

Refines the feature module in the adjacent layer. An adjacent layer is used as an input because 

the global information of the deep layer is richer than that of the shallow layer. So, the deep 

layer is used to refine the shallow layer. For instance, in Figure 1(b), E5 has richer global 

information than E4. We use E5 to refine E4 and supplement E4 as global information. The 

partial decoder module of the attention branch is multiplied by the corresponding elements of 

the third layer and then input to the detection branch, which is understood by individuals as a 

similar attention mechanism. For the sake of simplicity, the two branches of the model use the 

same partial decoder module structure. The difference is that the deeper receptive field is larger, 

so its global information should be more abundant. Taking them as input, we can obtain the 

redundant information caused by the dereferencing of the receptive field and use the redundant 

information to correct the features of the shallow layer. Such collar layer aggregation can better 

refine the shallow layer features. The two branches are jointly trained, the loss function adopts 

cross-entropy loss, and the total loss is the sum of the loss function output by the two branches 

of the partial decoder module. A unified architecture of the full decoder can be represented by: 

We built our architecture based on ResNeXt-101. It is highly renowned for producing almost 

state-of-the-art results in picture classification and strong generalization characteristics, as well 

as being the most often used backbone network in deep shadow detection models. We can 

abstract characteristics at three levels from the input image of size H×W, which is indicated as, 

{𝐸𝑖, 𝑖 = 1,… ,5} with output features map size: [
𝐻

2𝑖−1
,
𝑊

2𝑖−1
]. The decoder suggested above work 

as named complete decoders, incorporating all the functionality of the shadow map in Collar 

layer. Since the features of the shallow layers make a less effective contribution 𝐷𝑇 =

𝑔(𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5), where g(·) refers to an aggregation of a multi-level feature. We create a 

partial decoder that incorporates only the deeper layers. We designed a split communication 

infrastructure to increase features by utilizing the produced shadow map. As an optimization 

layer, we set Conv 3×3 and created two branches on the last two convolutional blocks. 

For the additional branches, we created a Partial Digital Converter Module to 

incorporate three-level characteristics specified at 𝐸𝑖
𝑎 = 𝐸𝑖, 𝑖 = 3,4,5. As a result, the partial 

decoder is denoted by 𝐷𝑎 = 𝑔𝑎(𝐸3
𝑎, 𝐸4

𝑎 , 𝐸5
𝑎) and creates a preliminary shadow map 𝑆𝑖. 
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Following completion of the planned Holistic Focus Module (HAM). Since the characteristics 

of the top three layers incorporate a reasonably reliable shadow diagram. Attention maps to 

features 𝑆ℎ of distraction maps, which E3 essentially removes. Then we have a 𝐸3
𝑑 refined 

detection function for the branch by multiplying the elemental characteristics and the concerned 

map:⁡𝐸3
𝑑 = 𝐸3 × 𝑆ℎ. Therefore, the two-tier detection branch characteristics are defined as 

𝐸4
𝑑 , 𝐸5

𝑑. By constructing another partial decoder 𝐷𝑑 = 𝑔𝑑(𝐸3
𝑑 , 𝐸4

𝑑 , 𝐸5
𝑑) The suggested model 

generates the ultimate shadow detection chart, Sd for the detection division. To make it clear, 

we set 𝑔𝑎 = 𝑔𝑑. We train the two divisions along with the simple facts. There are no general 

qualifications for both divisions. Due to 𝑆𝑖, Sd and the associated mark i, complete total Ltotal. 

The formulation is as follows: 

 𝐿total = 𝐿𝑐𝑒(𝑆𝑖, 𝑙 ∣ 𝜃𝑖) + 𝐿𝑐𝑒(𝑆𝑑, 𝑙 ∣ 𝜃𝑖)                                                                                  (2) 

Shadow feature redress module (SFRM) 

SFRM uses the output of SFEM Figure.2(b) and CNN's take features (E3, E4, E5) as 

input. Because the global semantic information of features refined by SFEM is richer than E3, 

E4, and E5 they're aggregated to get redundant information (area for detecting errors). To 

correct redundant information, use E3, E4, and E5. SFRM takes the adjacent features as input 

and outputs the corrected shadow features. First, it adds the collar layer feature and fed into a 

Conv-block and so gets the mask through the attention module. The mask image presentation 

is obtained by subtraction as an input layer to urge the context information and add this 

redundant information from the input layer to get the corrected shadow feature. SFRM is useful 

in discriminating between SFEM output and real shadows. This can be thanks to making the 

network less prone to getting accurate and fast shadows from any shadow images. 

ANALYSIS AND EXPERIMENTAL RESULTS 

In this section, we first present data sets and assessment parameters for shadow detection 

before comparing the proposed technique to existing shadow detectors and related works such 

as shadow deletion, detection, and classification techniques. 
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The dataset contains metrics for evaluation 

Training conditions 

We generate constants of a basic deep neural network by ResNeXt-101, It's quite good 

for ImageNet's photo categorization task, to speed up the training process and reduce the risk 

of overfitting, as some other function is given to discrete values. The entire network is 

optimized for 10000 iterations and an 8-batch size using the Stochastic gradient descent (SGD) 

optimizer with a momentum of 0.9 and weight decay of 5×10-4. We start with a learning rate of 

5×10-3 and lower it using a 0.9-strength polynomial approach. To train our network on a 

separate GTX 1080Ti, we scaled all labeled and unlabeled pictures to 320×320 and enrich the 

base classifier with random diagonal flips. 

Datasets 

To assess our technique, we utilize three available datasets: ISTD [22], SBU [23], and 

UCF [11]. The ISTD dataset includes 70 triples of shadow pictures, shadow-free pictures, and 

shadow maps of which 540 are tested. We have their shadow maps and photographs to estimate 

shadow detection for all of the evaluation metrics including pixel-by-pixel comments. SBU 

dataset including 4089 training and 638 assessing photos. The UCF dataset comprises 245 

pictures, 110 of which were evaluated. ISTD only has pictures with shadows, but SBU and UCF 

have both self-shadowed and pictures with shadows in different situations. To demonstrate our 

model's generalization potential, we trained on the SBU and UCF datasets and tested both. We 

reorient the algorithm on the training sample for ISTD and then analyze the implementation of 

this testing data. 

Metrics for evaluation 

To quantify the performance of shadow detection, we use a balanced error rate (BER): 

𝐵𝐸𝑅 = 100 ∗ (1 −
1

2
∗ (

𝑁𝑡𝑝

𝑁𝑝
+

𝑁𝑡𝑛

𝑁𝑛
))                                                                            (3) 

where Np, Nn, Ntp, and Ntn, represent the recognition accuracy, and shadow, non-shadow, and 

true negative pixels in the shadow picture, separately. A better shadow accuracy rate is indicated 

by a lower BER rating. 
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Method of evaluation for shadow detection 

We evaluate our technique with ideal shadow detection methods such as DSDNet [25], 

DC-DSPF, BDRAR [24], AD-Net [20], DSC [25], ST-CGAN, patched CNN [26], scGAN, and 

stack-CNN, that use deep learning, and Unary-Pairwise that use hand-crafted features. For a 

reasonable assessment, we used the author's published outcomes from the publication. 

Visual contrast 

As shown in the Figure, we use the shadow detection map created by our approach and 

the most recent method for offering to individuals (Figure). 

The figure illustrates this. (3) that our approach can be successful, we give some visual 

data to qualitatively compare our methods to available methods, as shown in Figure 3. We can 

see from the top three rows that our technique is more capable of discriminating between actual 

shadows and non-shadows in terms of shadow appearance than alternative ways. In the last 

row, for example, our method can accurately detect the shadow areas, while other dominant 

methods (i.e. DSDNet, for example) appear to mist rack the shadows from barrel-shape 

cylinders inside the top of the corner. Dark work-like shadows were detected inappropriately 

in the second row, current ways (e.g. BDRAR). The last two rows display several challenging 

cases of shadow-detection, anywhere real shadows test like a background visually (potential 

false negatives). We'll be able to see that our strategy will clear the cases with continued 

progress, while alternate approaches neglect actual shadow areas. For instance, in the fourth 

row, all current ways except our methods, the black part at the bottom of the stairs sections as 

non-shadow (false negative) under the shadow regions, whereas DSDNet, BDRAR, and DSC 

will struggle to see the non-shadow region between two legs. Our method predicts them 

accurately in terms of distinction. Finally, as seen in Figure. (3), we would like to discuss the 

predictions of FP and FN made in our PD module. These findings will shed light on the 

integration of distraction linguistics, into certain challenging situations and will enable the 

identification of shadows. For example, our FP predictor estimates that the black part at the 

bottom of the stairs is a false positive in the prime row, which helps to ensure that the shadow 

area is correctly discriminated against by our model. In the second section, our FN predictor 
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works with a high visual resemblance to the adjacent building in the shadow zone. It will make 

our model simpler to fix possible ambiguities in the shadow area at intervals. 

 

 

Figure 3.  Compares our methods to available methods. 
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Qualitative contrast 

In three data sets, Table 1, our strategy is realistic, especially in comparison to others. 

The lower the shadow and non-shadow error rates, the more comprehensive and redundant the 

Table 1. Our strategy is realistic, especially in comparison to other methods.          

Dataset ISTD UCF SBU 

Method BER Shadow Non-

Shadow 

BER Shadow Non-

Shadow 

BER Shadow Non-

Shadow 

PSPNet 4.26 4.51 4.02 11.75 0.00 0.00 8.57 0.00 0.00 

AADEF

-Net 

0.00 0.00 0.00 0.00 0.00 0.00 3.77 4.24 3.33 

GateNet 0.00 0.00 0.00 0.00 0.00 0.00 3.73 3..37 4.10 

EGNET 1.85 1.75 1.95 9.20 11.28 7.12 4.49 5.23 2.50 

SRM 7.92 13.97 1.86 12.51 21.41 3.60 6.51 10.52 2.50 

Amulet 0.00 0.00 0.00 15.17 0.00 0.00 15.13 0.00 0.00 

Deshado

wNet 

0.00 0.00 0.00 8.92 0.00 0.00 6.92 0.00 0.00 

Patched-

CNN 

0.00 0.00 0.00 0.00 0.00 0.00 11.56 15.60 7.52 

sgGAN 4.70 3.22 6.18 11.50 7.74 15.30 9.10 8.39 9.69 

Stacked-

CNN 

8.60 7.69 9.23 13.0

0 

9.00 17.10 11.0

0 

8.84 12.76 

UnaryPa

irwise 

0.00 0.00 0.00 0.00 0.00 0.00 25.03 36.26 13.80 

ST-

CGAN 

3.85 2.14 5.55 11.23 4.94 17.52 8.14 3.75 12.53 

DSC 3.42 3.85 3.00 10.54 18.08 3.00 5.59 9.76 1.42 

AD-Net 0.00 0.00 0.00 9.25 8.37 10.14 5.37 4.45 6.30 

BDRAR 2.59 0.50 4.87 7.81 9.69 5.94 3.64 3.40 3.89 

DC-

DSPF 

0.00 0.00 0.00 7.90 6.50 9.30 4.90 4.70 5.10 

DSDNet 2.17 1.36 2.98 7.59 9.74 5.00 3.45 3.33 3.58 

Ours 1.96 1.40 2.52 7.52 9.80 5.24 3.26 3.14 3.38 
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shadow detection map is, and the BER is their approximate amount, which determines the 

performance of the shadow detection map in a neutral way. 

The red annotation represents the highest result, and the blue represents the second-

highest result. In most circumstances, our technique has the lowest BER score. On ISTD 

datasets, where identity is more suited, EGNet works well. Furthermore, in the UCF and SBU 

data sets, our technique has the lowest BER score, indicating that our method performs better 

in dealing with varied settings and shadows, not only self- shadows. 

Furthermore, the solution based on custom feature identification has a higher BER score 

than deep learning-based techniques, demonstrating that supervised learning photos may be 

used to build stronger shadow detection features using deep learning approaches. These models 

may be re-trained, trained on shadow detection samples, and utilized to identify shadows. 

To further compare, we re-train and evaluate a contemporary shadow classification 

model, a semantic segmentation model, and a shadow removal model on shadow detection 

datasets using the researchers' codes and change the variables for optimum results. 

As demonstrated in Table 1, our technique beats current models in some instances, 

despite their greater spectral efficiency over some current shadow detectors. 

CONCLUSION 

This research describes a unique link for detecting single-image shadows. To thoroughly 

investigate the domestic and global relevant information decoded in various layers of a 

convolutional neural network (CNN), three strategies are tried to be introduced: partial decoder 

module (PDM), neighboring layer shadow function extractor unit ALSFEM, and shadow 

feature repair module SFRM (CNN). By studying the attentiveness strengths to pick an end-to-

end approach, the PDM module delivers a unique feature improvement technique for the 

scenario in the additional layer. The shadow context is aggregated in one direction at multiple 

levels, thus improving the shadow limits and also removing the non-shadow areas. Experiment 

results demonstrate that our model can tackle tough and unclear scenarios in the field of shadow 

detection positively, offering new state-of-the-art SBU, UCF, and ISTD dataset capabilities. 

But even if our techniques are designed to handle the most complicated concepts, poor shadow 

images with such a dark background don't fail to indicate, as shown in Figure (3) in the last 

row. 
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Finally, we test our network on three datasets and compare it to a variety of state-of-the-

art approaches, as well as display our network's accuracy results and BER statistics. 

Funding: The author(s) received no financial support for the research, authorship, 

and/or publication of this article. 

Conflicts of interest/Competing interests: currently available research influences us 

to study shadow detection. We think we can make something better for detecting shadows in 

still, continuous, and live images. For this research, we collected some existing data sets from 

the internet and we collected images for the application of our method from the internet also. 

After analyzing our method we detected shadows accurately. We will continue our research in 

the future for better shadow-removing systems in computer vision. 

Availability of data and material: Internet and some physical sources. 

Code availability (software application): We cannot share our custom code. But we 

wrote our code in Python and simulated it with PyCharm. 

Authors' contributions: Successfully detected shadows by this research and compared 

them with other methods. We proved that our method can identify the best results rather than 

others. 

REFERENCES 

[1] Guanbin Li, Yu Y. Visual saliency based on multiscale deep features. IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR). 2015; 5455-5463. doi: 

10.1109/CVPR.2015.7299184 

[2] Finlayson Graham D, Drew Mark S, Lu Cheng. Entropy minimization for shadow 

removal. International Journal of Computer Vision. 2009; 85 (1): 35-57. 

[3] Lalonde J.F., Efros A.A., Narasimhan S.G. Detecting Ground Shadows in Outdoor 

Consumer Photographs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – 

ECCV 2010. ECCV 2010. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. 

2010; 6312. https://doi.org/10.1007/978-3-642-15552-9_24 

[4] Ruiqi Guo, Qieyun Dai, Derek Hoiem. Paired regions for shadow detection and removal. 

IEEE transactions on pattern analysis and machine intelligence/ 2012; 35(12): 2956-2967. 

[5] Vicente T.F.Y., Hoai M., Samaras D. Leave-One-Out Kernel Optimization for Shadow 

Detection and Removal. In IEEE Transactions on Pattern Analysis and Machine Intelligence. 



Современные инновации, системы и технологии // 
Modern Innovations, Systems and Technologies  

2022; 2(3) 
https://www.oajmist.com 

  

 

0328 

 
 

 

2018;  40 (3): 682-695. doi: 10.1109/TPAMI.2017.2691703 

[6] Ding B., Long C., Zhang L., Xiao C. ARGAN: Attentive Recurrent Generative 

Adversarial Network for Shadow Detection and Removal. IEEE/CVF International Conference 

on Computer Vision (ICCV). 2019; 10212-10221. doi: 10.1109/ICCV.2019.01031 

[7] Hearst Marti A., Dumais Susan T, Osuna Edgar, Platt John, Scholkopf Bernhard. Support 

vector machines. IEEE Intelligent Systems and their applications. 1998; 13 (4): 18-28. 

[8] Liu C., Jia K., Liu P. Fast Intra Coding Algorithm for Depth Map with End-to-End Edge 

Detection Network. IEEE International Conference on Visual Communications and Image 

Processing (VCIP). 2020; 379-382. doi: 10.1109/VCIP49819.2020.9301859 

[9] Wang Yupei, Zhao Xin, Li Yin, Hu Xuecai, Huang Kaiqi. Densely cascaded shadow 

detection network via deeply supervised parallel fusion. In Proceedings of the 27th International 

Joint Conference on Artificial Intelligence (IJCAI'18). AAAI Press. 2018; 1007-1013. 

[10] Chen S., Fu Y. Progressively Guided Alternate Refinement Network for RGB-D Salient 

Object Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – 

ECCV 2020. ECCV 2020. Lecture Notes in Computer Science. 2020; 12353. Springer, Cham. 

https://doi.org/10.1007/978-3-030-58598-3_31 

[11] Simonyan Karen, Zisserman Andrew. Very deep convolutional networks for large-scale 

image recognition. arXiv preprint arXiv. 2014; 1409.1556. 

[12] Jiandong Tian, Xiaojun Qi, Liangqiong Qu, Yandong Tang. New spectrum ratio 

properties and features for shadow detection. Pattern Recognition. 2016; 51: 85-96. 

[13] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, Rynson W. H. Lau. 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 

2017; 4067-4075. 

[14] Caijuan Shi, Weiming Zhang, Changyu Duan, Houru Chen. A pooling-based feature 

pyramid network for salient object detection. Image and Vision Computing. 2021; 107: 104099. 

[15] Salman Hameed Khan, Mohammed Bennamoun, Ferdous Sohel, Roberto Togneri. 

Automatic Feature Learning for Robust Shadow Detection. In Proceedings of the 2014 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR '14). IEEE Computer Society, 

USA. 2014; 1939-1946. https://doi.org/10.1109/CVPR.2014.249 

[16] Li Shen, Teck Wee Chua, Karianto Leman. Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR). 2015; 2067-2074. 



Современные инновации, системы и технологии // 
Modern Innovations, Systems and Technologies  

2022; 2(3) 
https://www.oajmist.com 

  

 

0329 

 
 

 

[17] Weiwei Sun, Ruisheng Wang. Fully convolutional networks for semantic segmentation 

of very high resolution remotely sensed images combined with dsm. IEEE Geoscience and 

Remote Sensing Letters. 2018;  15(3): 474-478. 

[18] Hieu Le, Tomas F. Yago Vicente, Vu Nguyen, Minh Hoai, Dimitris Samaras.  

Proceedings of the European Conference on Computer Vision (ECCV). 2018; 662-678. 

[19] Chen L.C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. DeepLab: Semantic 

Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 

CRFs. In IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018; 40 (4): 834-

848. doi: 10.1109/TPAMI.2017.2699184 

[20] Zhang L., Dai J., Lu H., He Y., Wang G. A Bi-Directional Message Passing Model for 

Salient Object Detection. IEEE/CVF Conference on Computer Vision and Pattern Recognition. 

2018; 1741-1750. doi: 10.1109/CVPR.2018.00187 

[21] Zhang P., Wang D., Lu H., Wang H., Ruan X. Amulet: Aggregating Multi-level 

Convolutional Features for Salient Object Detection. IEEE International Conference on 

Computer Vision (ICCV). 2017; 202-211. doi: 10.1109/ICCV.2017.31 

[22] Wu Zhe, Su Li. Qingming Huang. Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR). 2019; 3907-3916. 

[23] Wang J., Li X., Yang J. Stacked Conditional Generative Adversarial Networks for Jointly 

Learning Shadow Detection and Shadow Removal. IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, 2018; 1788-1797. doi: 10.1109/CVPR.2018.00192 

[24] Mingliang Xu, Jiejie Zhu, Pei Lv, Bing Zhou, Marshall F Tappen, Rongrong Ji. Learning-

based shadow recognition and removal from monochromatic natural images. IEEE 

Transactions on Image Processing. 2017; 26(12): 5811-5824. 

[25] Zheng Q., Qiao X., Cao Y., Lau R. W. H. Distraction-Aware Shadow Detection. 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019; 5162-

5171. doi: 10.1109/CVPR.2019.00531 

[26] Lei Zhu, Zijun Deng, Xiaowei Hu, Chi-Wing Fu, Xuemiao Xu, Jing Qin, Pheng-Ann 

Heng. Proceedings of the European Conference on Computer Vision (ECCV). 2018; 121-136. 

https://link.springer.com/conference/eccv 

 

https://link.springer.com/conference/eccv


Современные инновации, системы и технологии // 
Modern Innovations, Systems and Technologies  

2022; 2(3) 
https://www.oajmist.com 

  

 

0330 

 
 

 

INFORMATION ABOUT THE AUTHORS 

Islam Md Jahidul, School of Software 

Engineering, Northeastern University, No. 

195, Chuangxin Road, Hunnan, Liaoning, 

110819, Shenyang, P. R. China; School of 

Communication and Information 

Engineering, Chongqing University of Posts 

and Telecommunications, 2 Chongwen Rd, 

Chongqing, 400065, Nan An Qu, P. R. China 

e-mail: jahidulislamneu@gmail.com 

Omar Faruq, School of Communication and 

Information Engineering, Chongqing 

University of Posts and 

Telecommunications, 2 Chongwen Rd, 

Chongqing, 400065, Nan An Qu, P. R. 

China; School of Software Engineering, 

Northeastern University, No. 195, 

Chuangxin Road, Hunnan, Liaoning, 

110819, Shenyang, P. R. China 

e-mail: smomarfaruq@diu.edu.bd 

   

 
 

Статья поступила в редакцию 20.09.2022; одобрена после рецензирования 23.09.2022; принята 

к публикации 26.09.2022. 

The article was submitted 20.09.2022; approved after reviewing 23.09.2022; accepted for publication 

26.09.2022. 

 


